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Abstract

In this work, we develop a scheme based on solving the general integro-differential equation of radiation transport to

estimate simultaneously the distribution of the extinction coefficient, the scattering albedo and the phase function of a

two-dimensional inhomogeneneous medium with less diffusive radiation. The forward problem for a cylindrical me-

dium subjected to collimated incident radiation is solved by the discrete-ordinate method. The inverse radiation

problem is formulated as a least square problem that minimizes the discrepancy between the measured and the cal-

culated leaving radiative fluxes. The Levenberg–Marquardt algorithm is applied to the least square problems for a

variety of cases. The results obtained show that this scheme can reconstruct accurate enough results for most of the

cases considered. Comparisons of the results show that the accuracy of the estimated results decreases with the increase

of the scattering albedo and we need more discrete ordinates to generate accurate enough estimated results for an

optically thin case. The estimated results obtained from the measurement data with moderate errors are still acceptable.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Determination of the radiative properties and the

source terms of participating media from the available

measurements of radiative intensities or fluxes has at-

tracted great attention in many areas, such as optical

tomography in medical imaging [1,2], estimating radia-

tive properties of flames and fibrous insulation materials

[3–7] and atmosphere remote sensing [8]. While the

radiation measurements have the advantage of being

non-invasive for the inverse problems of estimating

properties, the reliability of the techniques depends on

the numerical scheme adopted for inverse problem cal-

culation. Many schemes, such as the transmission to-

mography [3,4,6,9], developed for non-scattering cases

are quite effective and robust. Instead of the transmission

tomography, Meng€uuc and coworkers developed a scat-

tering tomography to determine the radiative properties

in radially inhomogeneous sooting flames [5,10]. First

two orders of scattering are accounted in their work and

the results are in good agreement with theory until an

optical thickness of 1.0 [5]. However, radiation transport

with high orders of scattering, such as radiative heat

transfer in fibrous insulation materials and visible light

propagation in biological tissues, makes the application

of the above technique difficult, so increasingly attention

is turning to iterative, optimization-based reconstruction

methods. To solve the forward problem of radiation

transport mapping a given solution of absorbing and

scattering properties to the corresponding boundary

measurements, several approaches have been used by the

reconstruction methods [1,2]. Statistical methods, such as

Monte Carlo and random walk methods, are employed

by many authors [1,2]. However, they are prohibitively

costly in computation time and care has to be taken with

the statistical error [2]. The diffusion approximation

frequently adopted by optical tomography reduces the

integro-differential equation of radiation transport to

differential equations by expanding the intensity in a
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series of spherical harmonics and by employing an an-

isotropy parameter to approximate the scattering phase

function [1,2]. The diffuse optical tomography is very

successful in clinical applications, because most tissues

of interest are optically thick and strongly scattering.

However, when the optical tomography is applied to

imaging of the brain, the domain of interest includes non-

diffusive regions [11]. For engineering application, such

as estimating radiative properties of flames, the radiation

field is not diffusive enough either. Either the direct or the

inverse analysis of the less diffusive radiation in an op-

tically not thin medium requires rigorous solution

methods. However, only a few researchers used rigorous

methods to reconstruct the radiation parameters for

multi-dimensional media and only a part of the unknown

radiation parameters was estimated simultaneously.

Some inverse analysis techniques were reviewed by Mc-

Cormick [12]. Yuen and co-worker applied a generalized

zonal method to estimate the extinction coefficient and

the scattering albedo of a two-dimensional medium [7].

Aronson and co-workers used Monte Carlo procedures

to simulate the scattering of a laser beam in a tissue slab

and determine regions of absorption inhomogeneity [13].

Chang and co-workers applied the Monte Carlo simu-

lations to the recovery of the perturbation changes in

absorptions for a cylindrical medium [14]. Klose and

Hielscher reconstructed the scattering coefficient of a two-

dimensional medium by solving the discrete-ordinate

Nomenclature

Ak ; bAAk coefficients of exact and estimated phase

functions, respectively, see Eqs. (2) and

(9)

amn; bmn coefficients of estimated distribution of the

extinction coefficient, see Eq. (10)

F objective function to be minimized, see Eq.

(11)

I dimensionless radiation intensity

I i radiation intensity of irradiation at ð1;wiÞ
along the propagation direction ðwi þ p; 0Þ,
see Fig. 1

K, bKK orders of the exact and estimated phase

function expansions, respectivelybMMb, bNNb, bLLb orders of expansion in the r-, w- and z-
directions, respectively, for the estimated

distribution of the extinction coefficient, see

Eq. (10) and Eq. (13)

Nwx
, Mh numbers of discrete ordinates, see Eq. (8)

Nr, Nw, Nz numbers of cells in the r-, w- and z-direc-
tions, respectively

Ni total number of incidence, see Eq. (11)

Nl number of measured leaving radiative fluxes

for each incidence, see Eq. (11)

~qqi, q̂qi ith measured and estimated dimensionless

leaving radiative fluxes, respectively, see Eq.

(11)

r dimensionless radial coordinate

r0 radius of the cylindrical medium

r1, r2 variables defined in Table 1

z dimensionless axial coordinate

w quadrature weight

Greek symbols

U; bUU exact and estimated phase functions, re-

spectively

b, b̂b exact and estimated dimensionless extinc-

tion coefficients, respectively

j absorption coefficient

g, l, n direction cosines, see Eq. (1)

h polar angle, see Fig. 1

h0 angle defined as h0 ¼ ll0 þ gg0 þ nn0, see Eq.

(2)

r ratio of the standard deviation of the mea-

surement data to its exact value

rs scattering coefficient

x, x̂x exact and estimated albedos, respectively

w spatial azimuthal angle, see Fig. 1

wi spatial azimuthal angle of the incident point,

see Fig. 1

wx directional azimuthal angle relative to the x-

axis, see Fig. 1

f random variable

sc optical path length, see Eq. (5)

Superscripts

c collimated part

d diffuse part

i ith incidence

Subscripts

b backward direction

f forward direction

i index of the r-coordinate, or the ith inci-

dence

j index of the w-coordinate
l location of leaving radiative flux, or index

used in Eq. (13)

m, n index of discrete ordinates, see Eq. (8), or

index used in Eq. (10)

r radial coordinate

h polar angle, see Fig. 1

w spatial azimuthal angle, see Fig. 1

wx directional azimuthal angle relative to x-

axis, see Fig. 1
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formulation of the transport forward model in rectan-

gular coordinates [15,16]. There are few works on the

inverse analysis of all radiation parameters of multi-

dimensional media considering cases with less diffusive

radiation, which shall be described by the general inte-

gro-differential equation of radiation transport. The less

diffusive radiation appears, when the optical size of the

medium is not large or the scattering is not strong. Thus,

this work aims to develop a scheme based on solving the

general integro-differential equation of radiation trans-

port to estimate the distributions of all unknown radia-

tion parameters, including the extinction coefficient, the

scattering albedo and the phase function of an inhomo-

geneous multi-dimensional medium. The effects of vari-

ous computational and physical parameters, including

the order of expansion for distributions of the extinction

coefficient and the phase function, the number of discrete

ordinates, the numbers of incidences and measured

leaving radiative fluxes, the optical size, the scattering

albedo, and the measurement error, on the estimated

results are examined.

In this work, we consider a complete scattering

model, including the high-order expansion of phase

function, for a cylindrical medium subjected to colli-

mated incident radiation. The forward problem is solved

by a modified discrete-ordinate method (DOM), which

can remedy the ray effects [17,18]. The inverse radiation

is formulated as a least square problem that minimize

the discrepancy between the measured and the calcu-

lated leaving radiative fluxes. A standard least-square

optimization procedure, the Levenberg–Marquardt al-

gorithm, is used to solve the inverse problem. The in-

verse scheme based on transport calculations solving the

exact formulation of radiative transfer is applied to a

variety of cases, including those with less diffusive radi-

ation. The scheme is mainly applied to two-dimensional

inhomogeneous media; for the purpose of comparison,

we also consider a three-dimensional case.

2. Analysis

In this section we aim to develop a scheme to estimate

the unknown radiative properties of a participating me-

dium by utilizing the measured fluxes leaving the me-

dium, as shown in Fig. 1(a). First, we consider radiative

transfer in an absorbing and scattering cylindrical me-

dium with a transparent boundary. The emission of the

medium is far less than the incident radiation, and so

the emission is negligible in the present analysis. When

the incident radiations do not vary along the axial di-

rection, the medium extends to infinity in the axial

direction, and the absorption and scattering coefficients

of the medium (j and rs) may vary only radially and

azimuthally, the problem is two-dimensional. Otherwise,

either the forward problem of the inverse problem is

three-dimensional. The following is the two-dimensional

version of the problem. The position in the radiative field

can be specified by the azimuthal angle w and the di-

mensionless coordinate r defined as the radial geometri-

cal variable divided by the radius r0. The propagation

direction of the radiation intensity at that point can be

specified by ðwx; hÞ, where either wx or h is defined by the

angle between the propagation direction of radiation and

a Cartesian coordinate, as shown in Fig. 1(b). Thus a set

of fixed values ðwx; hÞ defines the same propagation di-

rection at any spatial location. The transport equation

of radiative transfer can be expressed as

l
o

or
Iðr;w;wx; nÞ þ

g
r

o

ow
Iðr;w;wx; nÞ þ bðr;wÞIðr;w;wx; nÞ

¼ xðr;wÞbðr;wÞ
4p

Z 2p

w0
x¼0

Z 1

n0¼�1

Iðr;w;w0
x; n

0Þ

� Uðr;w;wx; n;w
0
x; n

0Þdn0dw0
x 06 r6 1; 06w < 2p;

06wx < 2p; �16 n6 1; ð1Þ

Fig. 1. Physical model and coordinates: (a) physical model, (b)

coordinates.

N.-R. Ou, C.-Y. Wu / International Journal of Heat and Mass Transfer 45 (2002) 4663–4674 4665



where l denotes the directional cosine defined as

l ¼ sin h cosðwx � wÞ, Iðr;w;wx; nÞ the radiation inten-

sity non-dimensionalized by the irradiation intensity I i

at r ¼ 1 and w ¼ wi along the direction defined by l ¼
�1 and n ¼ 0, n the directional cosine defined as n ¼
cos h, g the directional cosine defined as g ¼ sin h �
sinðwx � wÞ, b the dimensionless extinction coefficient

defined as ðj þ rsÞr0, x the scattering albedo defined as

rs=ðj þ rsÞ, and U the scattering phase function ex-

pressed in the form

Uðr;w;wx; n;w
0
x; n

0Þ ¼
XK
k¼0

Akðr;wÞPkðcos h0Þ: ð2Þ

Here, K denotes the order of anisotropic scattering, Ak

the coefficient of the expansion with A0 ¼ 1, Pk the kth-
order Legendre polynominal, and h0 ¼ cos�1ðll0 þ gg0 þ
nn0Þ. The dimensionless boundary condition for this

problem can be expressed as

Ið1;w;wx; nÞ ¼
1 at w ¼ wi; l ¼ �1; n ¼ 0;

0 otherwise;

(
06w < 2p; �16 n6 1; p=26 ðwx � wÞ6 3p=2:

ð3Þ

Next, we adopt a modified DOM [17,18] to solve the

forward problem of radiation transport. When the op-

tical thickness is small and radiative property distribu-

tion or the incident radiation from the boundary has

abrupt variation, the ordinary DOM may suffer from

the ray effects. Thus, similarly to the modified DOM

used by Liou and Wu [17] and Ramankutty and Crosbie

[18], we decompose I into the fairly diffuse part Id and

the collimated part Ic. The latter is zero except that

Icðr;w;wi þ p; 0Þ ¼ e�scðr;wÞ for w ¼ wi or w ¼ wi þ p

ð4Þ
with

scðr;wÞ ¼

R 1

r bðr0;wiÞdr0
for w ¼ wiR 1

0
bðr0;wiÞdr0 þ

R r
0
bðr0;wi þ pÞdr0

for w ¼ wi þ p

8>>><>>>: ð5Þ

Substituting Eqs. (4) and (5) into Eq. (1) yield the

transport equation for Id as

l
o

or
Idðr;w;wx; nÞ þ

g
r

o

ow
Idðr;w;wx; nÞ þ bðrÞIdðr;w;wx; nÞ

¼ xðr;wÞbðr;wÞ
4p

Z 1

�1

Z 2p

0

Idðr;w;w0
x; n

0Þ

� Uðr;w;wx; n;w
0
x; n

0Þdw0
x dn0 þ xðr;wÞbðr;wÞ

4p

� Uðr;w;wx; n;w
i þ p; 0ÞIcðr;w;wi þ p; 0Þ;

06 r6 1; 06w < 2p; 06wx < 2p; �16 n6 1; ð6Þ

The boundary condition for Id is

Idð1;w;wx; nÞ ¼ 0 06w < 2p; �16 n6 1;

p=26 ðwx � wÞ6 3p=2: ð7Þ

While Eq. (4) is the exact solution of Ic, we adopt a

DOM scheme [19] to solve Idðr;w;wx; nÞ.
The discrete-ordinate approximation of Eq. (6) can

be expressed as:

ln;mðwÞ
o

or
Idn;mðr;wÞ þ

gn;mðwÞ
r

o

ow
Idn;mðr;wÞ þ bðr;wÞIdn;mðr;wÞ

¼ xðr;wÞbðr;wÞ
4p

XNwx

n0¼1

XMh

m0¼1

Idn0 ;m0 ðr;wÞUn;m;n0 ;m0 ðr;wÞwn0 ;m0

" #(

þUn;m;ni ;miðr;wÞIcni ;mi ðr;wÞ
)

for 06 r61; 06w < 2p;

n¼ 1;2; . . . ;Nwx
; m¼ 1;2; . . . ;Mh ð8Þ

where the subscripts n and m represent the discrete di-

rections, wn0 ;m0 the quadrature weight, the subscripts ni,
mi the direction of incident radiation, Nwx

and Mh the

numbers of discrete ordinates over 06wx 6 2p and

�p=26 h6 p=2, respectively. We divide the whole do-

main into Nr � Nw cells, where Nr and Nw denote the

numbers of cells in the r and w directions, respectively.

By the same procedure as Ref. [19], we can obtain the

finite-difference approximation of Eq. (8), and the re-

sulting algebraic equations are solved by Gauss–Seidel

method. Therefore, by giving the relevant absorbing and

scattering properties, we can get the corresponding

leaving radiative fluxes.

To solve the inverse problem, we consider radiative

transfer in a medium composed of same species of par-

ticles with variable concentration. The radiative prop-

erties of such a medium can be described by a variable

extinction coefficient, a constant scattering albedo and a

constant phase function. Moreover, the particles are

assumed to be perfect spherical, and so the phase func-

tion is independent of azimuthal angle and only con-

cerned with the angle formed by the direction of incident

ray and the forward direction of the scattered ray ðh0Þ.
Thus, the unknown phase function is expressed as

bUU ¼
XbKK
k¼0

bAAkPkðcos h0Þ ð9Þ

and the unknown albedo is denoted by x̂x. The unknown

distribution of the extinction coefficient is expressed as

b̂bðr;wÞ ¼ a00 þ
XbMMb

m¼1

XbNNb

n¼0

rm amn cosðnwÞ½ þ bmn sinðnwÞ	;

06 r6 1; 06w < 2p: ð10Þ

Now, to reconstruct the radiative properties of the me-

dium is equivalent to find x̂x, bAAk , amn and bmn. Here, we
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try to find those unknowns by minimizing the objective

function

F ¼
XNi

i¼1

XNl

l¼1

~qqiNrþ1=2;l

n
� q̂qiNrþ1=2;l b̂bðr;wÞ; x̂x; bUUh io2

; ð11Þ

where i denotes the ith incidence, Ni the total number of

incidences, l the lth measured point under the ith inci-

dence, Nl the total number of measured leaving radiative

fluxes for each incidence, ~qqiNrþ1=2;l and q̂qiNrþ1=2;l the mea-

sured and estimated leaving radiative fluxes in the radial

direction at the boundary r ¼ 1, respectively. By Ni times

of incidences and Nl measured data generated for each

incidence, Ni � Nl measured data can be obtained to

reconstruct the radiative properties. To determine those

unknowns, the number of the measured data ðNi � NlÞ
shall be greater than the number of unknowns, 2 �
½ bMMb � ðbNNb þ 1Þ	 þ bKK þ 2.

As shown in Fig. 1(a), the incident radiation enters

the domain considered once at only one location of the

peripheral cylindrical surface surrounding the medium

and the radiative fluxes leaving the peripheral cylindrical

surface are measured at the other Nl locations. We

consider those locations to be equally spaced by the

azimuthal angle Dw ¼ 2p=Ni. While the incident radia-

tion enters the domain at a different location, we mea-

sure the other set of the leaving radiative fluxes. The

leaving radiative flux caused by the ith incidence could

be expressed as:

If the distributions of the radiation properties are

three-dimensional, we have to solve a three-dimensional

problem in terms of the radiation intensity Iðr;w; z;
wx; nÞ, which depends on three spatial variables and two

directional variables, instead of Iðr;w;wx; nÞ. Besides,

one more differential term, nðo=ozÞIðr;w; z; wx; nÞ, shall
be added to the governing equation, Eq. (1). To recon-

struct the three-dimensional distributions of the radia-

tion properties, we need more data of the leaving fluxes.

They can be obtained by scanning the incident beam

both along the peripheral and the axial directions over

the cylindrical medium. However, the numerical proce-

dure is similar to the two-dimensional one, except that

the unknown distribution of the extinction coefficient is

expressed as

b̂bðr;w; zÞ ¼ a000 þ
XbMMb

m¼1

XbNNb

n¼0

XbLLb

l¼1

rm amnl cosðnwÞ½ þ bmnl sinðnwÞ	zl

þ
XbMMb

m¼1

am00rm þ
XbLLb

l¼1

a00lzl ð13Þ

The steps of reconstructing radiative properties are

summarized as follows:

1. Guess the properties b̂b, x̂x and bUU by giving parameters

amn ¼ 0, bmn ¼ 0, x̂x ¼ 0:1 and bAAk ¼ 0, except that

a00 ¼ 1 and bAA0 ¼ 1.

2. Solve the forward problem and obtain q̂qiNrþ1=2;j
ðb̂b; x̂x; bUUÞ by the DOM.

3. Find the new estimation of parameters amn, bmn, x̂x
and bAAk by minimizing the objective function. A stan-

dard least-square optimization procedure, the Leven-

berg-Marquardt algorithm [20,21], is used here.

4. Stop the iteration, if the two successive estimated val-

ues of amn, bmn, x̂x and bAAk meet one of the following

specified criterions. Otherwise return to step 2 with

the newest set of estimated parameters.

The stopping criterions are as follows: (i) on two

successive iterations each of the parameters agrees to six

digits, (ii) on two successive iterations the relative dif-

ference of the objective functions is less than 10�8, (iii)

the Euclidean norm of the approximate gradient of the

objective function is less than 10�8.

3. Results and discussion

To examine the effects of the numbers of the cells and

the discrete ordinates, the extinction coefficient with a

non-smooth distribution (b1 listed in Table 1) is con-

sidered first. Fig. 2(a) show that the results for 80� 96

and 40� 48 cells are in excellent agreement, and the

results obtained by using 20� 24 cells are not accurate

enough for this non-smooth extinction coefficient. Fig.

2(b) shows that convergent results can be obtained by

using 12� 5 discrete ordinates. When the distribution of

the extinction coefficient is smooth, the convergent re-

sults can be obtained by using less cells and discrete

ordinates, as shown in Fig. 3(a). The inverse calculations

are carried out to estimate the albedo and the extinction

coefficient of the medium with a known phase function

for a sequence of Mb’s. As shown in Fig. 3(b), the esti-

mated b2’s for x1 and x3 are in excellent agreement with

the exact b0
2s except those obtained by using b̂b2 withbMMb ¼ 3. The recovered value of the albedo is the same

as the exact value, except that x̂x3 ¼ 0:985 for the cal-

culation with bMMb ¼ 3. The comparison reveals that the

reconstruction of radiative properties of a highly scat-

tering medium needs high-order expansions of the esti-

mated properties. For the case shown in Fig. 3(b), the

qiNrþ1=2;j ¼
PNwx

n¼1

PMh
m¼1 INrþ1=2;j;n;mlj;n;mwn;m þ IcNrþ1=2;ji ;ni ;mi ; j ¼ ji þ Nw=2PNwx

n¼1

PMh
m¼1 INrþ1=2;j;n;mlj;n;mwn;m; j 6¼ ji þ Nw=2

( )i

for lj;n;m > 0: ð12Þ
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CPU times at x ¼ 0:99 for the calculations using b̂b2 withbMMb ¼ 6, 5, 4 and 3 are 588, 471, 355 and 420 s on IBM

Deck 8400, respectively. This is because the b̂b2 with a too

small number of expansion terms ð bMMb ¼ 3Þ is a poor

estimation of b2, and so the inverse calculation withbMMb ¼ 3 needs a large number of iterations and more

CPU time to obtain convergent results. Moreover, the

inverse calculations are carried out to estimate the dis-

tribution of a non-smooth extinction coefficient ðb̂b1Þ for
a sequence of Mb’s. The convergent results obtained for

the extinction coefficient are shown in Fig. 4. It is seen

from Fig. 4(a) that the estimated distribution could fit

into the convex part of the exact distribution for bMMb

higher up to 12. The estimated distributions for Nr ¼ 80

seem closer to exact distribution than those for Nr ¼ 40,

as shown in Fig. 4(b). As expected, for the non-smooth

b1, both more cells and higher-order expansions of b̂b1

are necessary for the accurate estimations of the ex-

tinction coefficient. That is, the spatial resolution of the

reconstructed results can be improved by using more

cells and higher-order expansions of the unknown.

To further examine the effectiveness of the inverse

scheme presented above, we consider the reconstruction

of more combinations of the distributions of the ex-

tinction coefficient, the albedos and the phase functions

listed in Table 1. The extinction coefficients are chosen

so that the characteristic optical sizes of the media are

unity. Here, the characteristic optical size is the optical

radius for one-dimensional cases and the optical thick-

ness along x-axis for multi-dimensional cases. Besides,

the scattering albedo considered in this work is usually

not large ðx ¼ 0:5Þ, and so the radiation in those cases is

less diffusive. Multiplying a constant to the coefficients

Table 1

Properties of the media considered

Extinction coefficients

b1ðrÞ ¼

1:0
1þ 5ðr � 0:7Þ
1:25
1:25� 10ðr � 0:8Þ
0:75

for

r6 0:7
0:76 r6 0:75
0:756 r6 0:8
0:86 r6 0:85
rP 0:85

8>>>><>>>>:
b2ðrÞ ¼

480

343

1

2

�
þ 11

8
r2 þ 21

8
r3 � 9

2
r4
�

b3ðr;wÞ ¼
1125

128

32

125
� 6

5
r21 þ r31

� �
þ 1

10
1

10

for
r1 6 0:8
r1 > 0:8

8>><>>:

b4ðr;wÞ ¼
1125

128

32

125
� 6

5
r22 þ r32

� �
þ 1

10
1

10

8>><>>: for
r2 6 0:8
r2 > 0:8

with

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r cosðwÞ � 1

5
	2 þ ½5

4
r sinðwÞ	2

q
;

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r cosðwÞ � 1

5
	2 þ ½r sinðwÞ	2

q
Scattering phase functions

Uf ¼ 1:0þ 1:98398P1ðcos h0Þ þ 1:50823P2ðcos h0Þ
þ 0:70075P3ðcos h0Þ þ 0:23489P4ðcos h0Þ
þ 0:05133P5ðcos h0Þ þ 0:00760P6ðcos h0Þ
þ 0:00048P7ðcos h0Þ

Ub ¼ 1:0� 0:56524P1ðcos h0Þ þ 0:29783P2ðcos h0Þ
þ 0:08571P3ðcos h0Þ þ 0:01003P4ðcos h0Þ
þ 0:00063P5ðcos h0Þ

with

h0 ¼ cos�1ðgg0 þ gg0 þ nn0Þ

Scattering albedoes

x1 ¼ 0:1

x2 ¼ 0:5
x3 ¼ 0:99

Fig. 2. Distributions of the leaving diffuse radiative fluxes with

b ¼ b1, U ¼ 1:0 and x ¼ 0:5: (a) different sets of cells, (b) dif-

ferent sets of discrete ordinates.
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of b1, b2, b3 or b4, we can change the characteristic

optical size of the medium considered. Performing the

forward computations for most of the cases with smooth

radiation parameters, we solve the radiative transfer

equation along Nwx
�Mh ¼ 12� 5 discrete ordinates

and divide the domain into Nr � Nw ¼ 10� 24 cells,

except the cases demonstrating the effects of the opti-

cal thickness and number of the discrete directions

ðNwx
�MhÞ on the reconstruction of radiative properties.

To estimate the two-dimensional distribution of the

extinction coefficient, we consider the case with b ¼ b3,

x ¼ x2 and U ¼ Ub. The distribution of the extinction

coefficient and the albedo are estimated from the

knowledge of Ni � Nl ¼ 23� 23 leaving radiative fluxes.

The exact and estimated distributions of the extinction

coefficient along the x- and the y-axis for three sets ofbMMb � bNNb are shown in Fig. 5(a) and (b), respectively.

The results obtained by using b̂b3 with bMMb � bNNb ¼ 5� 3

are in good agreement with the exact distribution of the

extinction coefficient. The x̂x obtained by using b̂b3 withbMMb � bNNb ¼ 5� 3 is 0.5, and 0.489, 0.485 for the other

two sets of bMMb � bNNb. Fig. 6(a) and (b) are the exact

distribution ðb3Þ and the recovered distribution (b̂b3),

respectively, obtained by using bMMb � bNNb ¼ 5� 3 ex-

pansion; they show an overall good agreement. Because

of the good agreement of the above results, we adoptedbMMb ¼ 5 in the r-direction and bNNb ¼ 3 in the w-direction
in the following cases.

Fig. 7 shows that the recovered distributions of the

extinction coefficient approach the exact distribution as

Ni and Nl increase. In this test case, we choose U ¼ 1 and

x ¼ x2, and use various combinations of Ni and Nl to

reconstruct the distribution of the b4. The incidence lo-

cations are equally spaced by Dw ¼ 2p=Ni around the

peripheral cylindrical surface of the medium. The mea-

surement locations are equally spaced by Dw ¼ 2p=Ni

for Ni � Nl ¼ 24� 23 and 12� 11 and by Dw ¼ 4p=Ni

for Ni � Nl ¼ 24� 11. The estimated distribution of the

extinction coefficient obtained from the knowledge of

Ni � Nl ¼ 24� 23 measurement data shows good agree-

ment with the exact distribution. Thus, we adopt Ni �
Nl ¼ 1� 23 measurement data for b ¼ b2 and Ni �
Nl ¼ 24� 23 measurement data for b ¼ b3 and b ¼ b4

in the following cases considered.

Fig. 3. (a) Distributions of the leaving diffuse radiative fluxes

with b ¼ b2, U ¼ Uf and x ¼ 0:5, (b) effects of the number of

expansion terms of b̂b for cases with x ¼ 0:1 and 0.99.

Fig. 4. (a) Effects of the numbers of expansion terms of b̂b for

cases with b ¼ b1, U ¼ 1 and x ¼ 0:5, (b) two sets of different

combined cells and expansion terms.
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By examining the estimated results of the extinction

coefficients for the cases with U ¼ 1, x ¼ x2, b ¼
0:1� b4 and b ¼ 10� b4, we investigate the effects of the

optical thickness and the discrete ordinates. The optical

thickness along the x-axis is 0.2 for the results shown in

Fig. 8(a) and 20 for those shown in Fig. 8(b). When the

number of the discrete ordinates (Nwx
and Mh) decreases,

the outcome of the optically thin case is worse than that

of the optically thick case, as shown in Fig. 8(a) and (b).

This is because we need more discrete ordinates to

obtain accurate solutions of the forward problem for an

optically thin case. The comparisons reveal that the

number of discrete ordinates has stronger influence on

recovering the extinction coefficients for optically thin

cases. When dealing with the cases with b ¼ 0:1� b4

and b ¼ 10� b4, we divide the entire domain into Nr �
Nw ¼ 10� 24 and Nr � Nw ¼ 100� 96 cells, respectively.

The CPU time for the optically thick case with Nwx
�

Mh ¼ 4� 1 is 18,985 s and that for the optically thin case

with Nwx
�Mh ¼ 4� 1 is 9542 s. The CPU time for the

optically thin case with Nwx
�Mh ¼ 12� 5, 8� 3 and

4� 1 are 49,523, 18,247 and 9542 sec on IBM Deck

8400, respectively. Those results of numerical experi-

Fig. 5. Effects of the number of expansion terms of b̂b for the

case with b ¼ b3, U ¼ Ub and x ¼ 0:5: distributions of the b
along (a) the x-axis, (b) y-axis.

Fig. 7. Effects of the numbers of incidences and measured

leaving radiative fluxes for the case with b ¼ b4, U ¼ 1:0 and

x ¼ 0:5: distributions of the b along (a) the x-axis, (b) y-axis.

Fig. 6. Two-dimensional distributions of exact and estimated

extinction coefficients for the case with b ¼ b3, U ¼ Ub and

x ¼ 0:5: (a) exact, (b) bMMb � bNNb ¼ 5� 3.
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ments show that the CPU times increase with the in-

crease of Nr � Nw and Nwx
�Mh.

Next, we consider complete inverse problems, in

which U, b, and x are estimated simultaneously. To

Fig. 8. Effects of the optical size and the number of discrete

ordinates for cases with U ¼ 1:0, x ¼ 0:5 and (a) b ¼ 0:1� b4,

(b) b ¼ 10� b4.

Fig. 9. Effects of the number of anisotropic scattering coeffi-

cients for the case with b ¼ b2, U ¼ Uf and x ¼ 0:5: (a) distri-

butions of the U, (b) distributions of the b.

Table 2

Estimated results (b̂b2, bUUf and x̂x) for various scattering albedos and measurement errors (r)

r x̂x Erms of b̂b2 Coefficients of Uf

x ¼ x1 10�2 0.095 2.441% bAA1 ¼ 1:9782, bAA2 ¼ 1:5213, bAA3 ¼ 0:6111, bAA4 ¼ 0:2192, bAA5 ¼ �0:1076,bAA6 ¼ �0:0124, bAA7 ¼ 0:0201

10�3 0.098 0.187% bAA1 ¼ 1:9837, bAA2 ¼ 1:5116, bAA3 ¼ 0:6951, bAA4 ¼ 0:2213, bAA5 ¼ 0:0453,bAA6 ¼ 0:0065, bAA7 ¼ 0:0011

0 0.1 0.021% bAA1 ¼ 1:9840, bAA2 ¼ 1:5082, bAA3 ¼ 0:7010, bAA4 ¼ 0:2350, bAA5 ¼ 0:0513,bAA6 ¼ 0:0076, bAA7 ¼ 0:0005

x ¼ x2 10�2 0.484 3.441% bAA1 ¼ 1:9801, bAA2 ¼ 1:5514, bAA3 ¼ 0:5912, bAA4 ¼ 0:2161, bAA5 ¼ �0:3173,bAA6 ¼ �0:1042, bAA7 ¼ 0:1502

10�3 0.495 0.297% bAA1 ¼ 1:9830, bAA2 ¼ 1:5123, bAA3 ¼ 0:6954, bAA4 ¼ 0:2293, bAA5 ¼ 0:0235,bAA6 ¼ �0:0072, bAA7 ¼ 0:0071

0 0.500 0.038% bAA1 ¼ 1:9840, bAA2 ¼ 1:5082, bAA3 ¼ 1:7010, bAA4 ¼ 0:2350, bAA5 ¼ 0:0513,bAA6 ¼ 0:0076, bAA7 ¼ 0:0005

x ¼ x3 10�2 0.924 8.672% bAA1 ¼ 1:8547, bAA2 ¼ 1:6014, bAA3 ¼ 0:6341, bAA4 ¼ 0:2032, bAA5 ¼ �0:3462,bAA6 ¼ �0:1322, bAA7 ¼ 0:1631
10�3 0.959 3.514% bAA1 ¼ 1:9824, bAA2 ¼ 1:5311, bAA3 ¼ 0:7142, bAA4 ¼ 0:2113, bAA5 ¼ 0:0576,bAA6 ¼ �0:0112, bAA7 ¼ 0:0091

0 0.989 1.451% bAA1 ¼ 1:9841, bAA2 ¼ 1:5083, bAA3 ¼ 0:7012, bAA4 ¼ 0:2354, bAA5 ¼ 0:0513,bAA6 ¼ 0:0080, bAA7 ¼ 0:0002
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examine the effects of the number of coefficients used in

the estimation of the anisotropic phase function, we

consider the case with U ¼ Uf , b ¼ b2, and x ¼ x2. The

results shown in Fig. 9(a) and (b) are obtained by using

four numbers of anisotropic scattering coefficients,bKK ¼ 9, 7, 5 and 3. As shown in Fig. 9(a) and (b), both

sets of curves for the estimated phase function and dis-

tributions of the extinction coefficient are in good

agreement with the exact U and distributions of the b,
respectively. The recovered values of x̂x is 0.5, 0.5, 0.5

and 0.497 for bKK ¼ 9, 7, 5 and 3, respectively. From the

above results, it is seen that the number of coefficients ofbUU does not have strong influence on recovering relevant

parameters. However, the CPU times for the calcula-

tions using bUU 0s with bKK ¼ 9, 7, 5 and 3 are 11100, 3193,

2689 and 4605 s on IBM Deck 8400, respectively. This is

because the bUU with a too small number of expansion

terms ðbKK ¼ 3Þ is a poor guess of Uf , and so the inverse

calculation with bKK ¼ 3 needs a large number of itera-

tions and more CPU time to obtain convergent results.

Since measured data are always accompanied by

some errors, the effects of measurement errors on the

accuracy of the estimation are also investigated. The

simulated measured leaving radiative fluxes with errors

ð~qqiÞ are obtained by adding normal distributed errors to

the leaving radiative fluxes ðqiexactÞ obtained by solving

the forward problem with a high-order ðNwx
�Mh ¼

12� 5Þ scheme and given exact b, x and U. That is,

~qqi ¼ qiexactð1þ r1Þ; ð14Þ

r is the ratio of the standard deviation of the measure-

ment data to its exact value, and 1 is a normal distrib-

uted random variable with zero mean and unit standard

deviation.

For the sake of comparison, the root mean square

error of the estimation of the extinction coefficient is

defined as

Ermsðb̂bÞ ¼
1

NrNw

XNr

i¼1

XNw

j¼1

bðr;wÞ
h(

� b̂bðr;wÞ
i2)1=2

:

ð15Þ

The results of the cases with U ¼ Uf , b ¼ b2 and three

different values of x are listed in Table 2 in terms of x̂x,

Ermsðb̂bÞ and bUUf . Comparisons of the results show that

the accuracy of x̂x, b̂b2 and bUUf decreases, as the r in-

creases, for all values of x considered. If we plot the

curves of bUUf versus h0 for r ¼ 0:0; 0:001; 0:01, the com-

parison of the curves reveals that the dependence of bUUf

on r is relatively small. Table 2 also shows that the ac-

curacy of the estimated results decreases with the in-

crease of x.

Fig. 10 shows the estimated results of b for the two-

dimensional cases with U ¼ Ub, b ¼ b3, x ¼ x2 and

r ¼ 0:001, 0.01, 0.05. The estimated results of the b even

obtained from measurement data with r ¼ 0:05 are still

acceptable. The discrepancy between the distributions of

the b3 and b̂b3 along the x- and the y-axis increases as r
increases, as shown in Fig. 10(a) and (b), respectively.

The dependence of x̂x and bUUf on r is similar to that

found for the one-dimensional cases shown in Table 2.

Finally, we consider the reconstruction of the ex-

tinction coefficient and the albedo for a finite cylindrical

medium with U ¼ 1, b ¼ b4, x ¼ 0:5, and unity optical

thickness in the z-direction. In this three-dimensional

case, we divide the domain into Nr � Nw � Nz ¼ 10 �
24� 10 cells and solve the radiative transfer equation

along Nwx
�Mh ¼ 12� 5 discrete ordinates. We adoptedbMMb ¼ 5, bNNb ¼ 3 and bLLb ¼ 3 to reconstruct the distribu-

tion of the extinction coefficient and the albedo. The

value of the estimated albedo is 0.492. Fig. 11(a) and (b)

show the distributions of the extinction coefficient over

the x-axis on the z cross-sections, z ¼ 0:5 and 0.95, re-

spectively. It is seen that the discrepancies among the

exact one, the estimated one and the estimated result

obtained by the two-dimensional scheme are small, es-

pecially on the central cross section ðz ¼ 0:5Þ. The

comparison reveals that the two-dimensional scheme

Fig. 10. Effects of the measurement error for the case with

b ¼ b3, U ¼ Ub and x ¼ 0:5: distributions of the b along (a) the

x-axis, (b) y-axis.
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using less computer source can replace the three-

dimensional scheme, when the distribution of the ex-

tinction coefficient is uniform in the z-direction.

4. Conclusions

This study developed the schemes for the simulta-

neous estimation of distribution of the extinction coef-

ficient, the scattering albedo and the phase function

under a completely scattering model. The schemes can

reconstruct accurate enough results for most of the cases

considered. The results show that the case with a non-

smooth distribution of the extinction coefficient needs

more cells and more terms of the expansion of the esti-

mated extinction coefficient to obtain accurate enough

estimated results. The accuracy of the estimated results

decreases with the increase of the scattering albedo. For

an optically thin case, we need more discrete ordinates to

generate accurate enough estimated results. The number

of the expansion coefficients of the phase function does

not have strong influence on recovering relevant pa-

rameters. The estimated results obtained from the

measurement data with moderate errors are still ac-

ceptable. This scheme can be extended to three-dimen-

sional cases readily.
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